
Deep Generative Models

15. Score-based model through SDE

•  국가수리과학연구소 산업수학혁신센터 김민중



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Recap. of score-based model 

• Fisher divergence between 𝑝 𝒙 and 𝑞 𝒙 :

𝐷! 𝑝, 𝑞 ≔
1
2
𝐸𝒙~$ ∇𝒙 log 𝑝 𝒙 − ∇𝒙 log 𝑞 𝒙 %

%

• Score matching(Hyv'rinen, 2005)
1
2
𝐸𝒙~$!"#" 𝒔& 𝒙 − ∇𝒙 log 𝑝'()( 𝒙 %

%

= 𝐸𝒙~$!"#"
1
2
𝒔& 𝒙 %

% + 𝑡𝑟 ∇𝒙𝒔& 𝒙 + 𝑐𝑜𝑛𝑠𝑡.
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𝐸*𝒙~+$ ∇*𝒙 log 𝑞, 9𝒙 − 𝒔& 9𝒙 %
%

= 𝐸𝒙~$!"#" 𝒙 𝐸*𝒙~+$ *𝒙|𝒙 ∇*𝒙 log 𝑞, 9𝒙|𝒙 − 𝒔& 9𝒙 %
% + const.

= 𝐸𝒙~$!"#" 𝒙 𝐸𝒛~/ 𝟎,𝑰
1
𝜎
𝒛 + 𝒔& 𝒙 + 𝜎𝒛

%

%
+ const.

• Pros
• more scalable than score matching
• reduces score estimation to a denoising task

• Con: cannot estimate the score of clean data (noise-free)
𝒔& 𝒙 ≈ ∇𝒙 log 𝑞, 𝒙 ≠ ∇𝒙 log 𝑝'()( 𝒙

Denoising score matching with Langevin dynamics

Perturbation 
distribution/kernel

𝒙~𝑝!"#" 𝒙
Data distribution

*𝒙 ~𝑞$ *𝒙
Noise-perturbed
data distribution
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Denoising score matching with Langevin dynamics

Perturbation 
distribution/kernel

𝒙~𝑝!"#" 𝒙
Data distribution

*𝒙 ~𝑞$ *𝒙
Noise-perturbed
data distribution

𝑞, 9𝒙|𝒙 ≔ 𝑁 9𝒙 𝒙, 𝜎%𝑰 , 𝑞, 9𝒙 = E𝑝'()( 𝒙 𝑞, 9𝒙|𝒙 𝑑𝒙

𝑝!"#" 𝒙 𝑞$ 𝒙
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Denoising score matching with Langevin dynamics

• Let 𝑞, 9𝒙|𝒙 ≔ 𝑁 9𝒙|𝒙, 𝜎%𝐼 , 𝑞, 9𝒙 ≔ ∫𝑝'()( 𝒙 𝑞, 9𝒙|𝒙 𝑑𝒙
• Consider a sequence of positive noise scales

𝜎5 < 𝜎% < ⋯ < 𝜎6
• 𝜎5 is small enough 𝑞,% 𝒙 ≈ 𝑝'()( 𝒙
• 𝜎6 is large enough 𝑞,& 𝒙 ≈ 𝑁 𝒙|𝟎, 𝜎6%𝑰

Data space Noise space

𝑝!"#" 𝑞$! 𝑞$" ⋯ 𝑞$%
≈ 𝑁 𝟎, 𝜎%&𝑰
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Denoising score matching with Langevin dynamics

• Let 𝑞, 9𝒙|𝒙 ≔ 𝑁 9𝒙|𝒙, 𝜎%𝐼 , 𝑞, 9𝒙 ≔ ∫𝑝'()( 𝒙 𝑞, 9𝒙|𝒙 𝑑𝒙
• Consider a sequence of positive noise scales

𝜎5 < 𝜎% < ⋯ < 𝜎6
• Noise conditional score network

L
785

6

𝜎7% 𝐸𝒙~$!"#" 𝒙 𝐸*𝒙~+$' *𝒙|𝒙 𝒔& 9𝒙, 𝜎7 − ∇*𝒙 log 𝑞,' 9𝒙|𝒙 %
%

• Given sufficient data and model capacity, the optimal score-
based model

𝒔&∗ 𝒙, 𝜎7 ≈ ∇𝒙 log 𝑞,' 𝒙 for 𝜎 ∈ 𝜎5, … , 𝜎6
• The weights 𝜎7% are related to 𝜎7% ∝ 1/𝐸 ∇*𝒙 log 𝑝,' 9𝒙|𝒙 %

%
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Generation with annealed Langevin dynamics

• For each 𝑞,' 𝒙 with 𝜎5 < 𝜎% < ⋯ < 𝜎6, Song & Ermond run 𝑇
steps of Langevin MCMC to get a sample sequentially

𝒙7) ≔ 𝒙7)95 +
𝛼7
2
𝒔&∗ 𝒙7)95, 𝜎7 + 𝛼7𝒛, 𝑡 = 1,2, … , 𝑇

• where 𝛼7 > 0 is the step size and 𝒛~𝑁(𝟎, 𝑰)

𝛼7 ≔ 𝜖
𝜎7%

𝜎5%
• 𝜖 > 0

Generative Modeling by Estimating Gradients of the Data Distribution
Song Yang, and Stefano Ermon. NeurIPS 2019
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Denoising diffusion probabilistic models(DDPM)

• Positive noise scales 0 < 𝛽5 < 𝛽%⋯ < 𝛽: < 1
• 𝒙;~𝑝'()( 𝒙 , construct latent variables 𝒙;, 𝒙5, 𝒙%, … , 𝒙: s.t.

𝑞 𝒙)|𝒙)95 ≔ 𝑵(𝒙)| 1 − 𝛽)𝒙)95, 𝛽)𝑰)
• I.e., 𝑞 𝒙) 𝒙; = 𝑵(𝒙;| ]𝛼)𝒙;, 1 − ]𝛼) 𝑰) where 𝛼) ≔ 1− 𝛽), 
]𝛼) ≔ ∏<85

) 𝛼<
• Similar to SMLD, we can denote the perturbed data distribution

𝑞 𝒙) ≔ E𝑞 𝒙) 𝒙 𝑝'()( 𝒙 𝑑𝒙

• The noise scales are prescribed s.t. 𝒙:~𝑞(𝒙:) ≈ 𝑁 𝟎, 𝑰

𝑝!"#" 𝑞(𝒙') 𝑞(𝒙&) ⋯ 𝑞(𝒙()
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Denoising diffusion probabilistic models(DDPM)

• A variational Markov chain in the reverse direction is 
parametrized with

𝑝& 𝒙)95|𝒙) = 𝑁 𝒙)95|𝝁& 𝒙), 𝑡 , 𝛽)𝑰
• where 𝝁& 𝒙), 𝑡 = 5

=#
𝒙) + 𝛽)𝒔& 𝒙), 𝑡

• Re-weighted variant of the evidence lower bound

L
)85

:

1 − ]𝛼) 𝐸𝒙~$!"#" 𝒙 𝐸𝒙#~+ 𝒙#|𝒙 𝒔& 𝒙), 𝑡 − ∇𝒙# log 𝑞 𝒙)|𝒙 %
%

• which is a weighted sum of denoising score matching
𝒔&∗ 𝒙), 𝑡 ≈ ∇𝒙# log 𝑞 𝒙)

• The weights 1 − ]𝛼) are related to

1 − ]𝛼) ∝ 1/𝐸 ∇𝒙# log 𝑞 𝒙)|𝒙 %
%
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Denoising diffusion probabilistic models(DDPM)

• Generate samples by starting from 𝒙:~𝑁 𝟎, 𝑰
• 𝒙)95 ≔

5
=#

𝒙) + 𝛽)𝒔&∗ 𝒙), 𝑡

%𝝁!∗ 𝒙#,#

+ 𝛽)𝒛, 𝑡 = 𝑇, 𝑇 − 1,… , 2

• We call this method ancestral sampling (∏)85
: 𝑝& 𝒙)95|𝒙) )

Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain, Pieter Abbeel. NeurIPS 2020



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Summary of score-based models

• SMLD and DDPM involve sequentially corrupting training data 
with slowly increasing noise, and then learning to reverse this 
corruption to form a generative model of the data

• SMLD estimates the score at each noise scale and then use 
Langevin dynamics to sample from a sequence of decreasing 
noise scales during generation

• DDPM trains a sequence of probabilistic models to reverse each 
step of the noise corruption, using knowledge of the functional 
form of the reverse distributions to make training tractable
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Infinite noise levels
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Score-based model through SDE

• Extend the analysis to an infinite range of noise scales, where the 
evolution of perturbed data distributions follows an SDE as the 
noise level increases

• The process follows a predefined SDE, which does not depend 
on 𝑝'()( without trainable parameters

• This framework provides a way to understand and connect both 
the SMLD and DDPM methods by using SDEs
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Score-based model through SDE

• By generalizing the number of noise scales to infinity, we obtain:
• higher quality samples
• exact log-likelihood computation
• controllable generation for inverse problem solving
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Ordinary differential equation

• For 𝑡 ≥ 0, consider an ODE which possesses the following form
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡

• 𝒙) ∈ ℝ'
• 𝒇 ⋅, 𝑡 : ℝ' → ℝ' (drift coefficient)

• Then 𝒙) )∈ ;,: is a deterministic curve

• Numerically, the ODE can be seen as the limit
𝒙7?5 = 𝒙7 + ∆𝑡𝑓 𝒙7, 𝑖∆𝑡 , 𝑖 = 0,1,⋯

• Under ∆𝑡 → 0, where 𝑡 = 𝑖∆𝑡

|
𝒙795 𝒙7 𝒙7?5
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Solution of ODE

• 𝒙) )∈ ;,:  solves ODE if it satisfies the 
• Differential form of the ODE

𝑑𝒙)
𝑑𝑡 = 𝒇 𝒙), 𝑡

• Or the integral form of the ODE

𝒙) = 𝒙; +E
;

)
𝑓 𝒙<, 𝑠 𝑑𝑠

• Example: 𝑥) ∈ ℝ
𝑑𝑥) = −𝜃𝑥)𝑑𝑡

• Then the solution of this ODE is
𝑥) = 𝑥;𝑒9&)
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Probability space

• Ω: Sample space (e.g., 𝐻, 𝑇 or ℝ')
• ℱ: 𝜎-algebra(𝜎-field) on Ω
• Ω ∈ ℱ
• If A ∈ ℱ, then A@ ∈ ℱ
• closed under countable union

• Probability measure 𝑃 on Ω,ℱ
• set function 𝑃:ℱ → ℝ? with 𝑃 Ω = 1 (non negativity, null 

empty set, countable additivity)
• Probability distribution can be regarded as probability space

Ω,ℱ, 𝑃
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Random variable

• Measurable function 𝒙: Ω → 𝐸 is called random variable if 𝒙 is a 
function from a probability space Ω,ℱ, 𝑃 to a measurable space 
𝐸, Σ

• The probability that 𝒙 takes on a value in a measurable set 𝑆 ⊂ 𝐸
is written as

𝑃 𝒙 ∈ 𝑆 = 𝑃 𝜔 ∈ Ω|𝒙 𝜔 ∈ 𝑆

• We are interested in the image of 𝒙
• 𝐸 is called state space
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Stochastic process

• 𝑇: index set (e.g., 0,1,2,⋯ , 0,1 , 0,∞ )
• If for each 𝑡 ∈ 𝑇, 𝒙) is a random variable, then 𝒙) )∈: is called 

stochastic process
• 𝒙) )∈:, 𝒙 𝑡 )∈:, 𝒙), 𝑡 ∈ 𝑇 , 𝒙 𝜔, 𝑡 , 𝜔 ∈ Ω, 𝑡 ∈ 𝑇

• Ω,ℱ, 𝑃 with ℱ) )∈:

• In other words, stochastic process is a collection of random 
variables indexed by some index set 𝑇



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Brownian motion(a.k.a. Wiener process)

• The random motion of particles suspended in a medium
• Mathematically, 1-dim BM is characterized by
• 𝑤; = 0
• 𝑤) is almost surely continuous
• 𝑤) has independent increments
• 𝑤) −𝑤<~𝑁(0, 𝑡 − 𝑠) when 0 ≤ 𝑠 < 𝑡
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Brownian motion(a.k.a. Wiener process)

• The random motion of particles suspended in a medium
• Mathematically, 1-dim BM is characterized by
• 𝑤; = 0
• 𝑤) is almost surely continuous
• 𝑤) has independent increments
• 𝑤) −𝑤<~𝑁(0, 𝑡 − 𝑠) when 0 ≤ 𝑠 < 𝑡

• 𝑑-dim BM

𝒘) = 𝑤5,), 𝑤%,), ⋯ ,𝑤',)
:

• where 𝑤7,) are mutually independent 1-dim BM
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Brownian motion

• 𝑇 = 0,∞
• 𝐸 = ℝ
• Ω = 𝐶 0,∞
• ℱ: Borel 𝜎-algebra of Ω
• 𝑃: Wiener measure

𝑃 𝑤) ∈ 𝑆 = E
A

1
2𝑡
𝑒9B)/%)𝑑𝑥



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Stochastic differential equation

• For 𝑡 ≥ 0, consider an SDE which possesses the following form
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘)

• 𝒇 ⋅, 𝑡 : ℝ' → ℝ' (drift coefficient)
• 𝑔 𝑡 ∈ ℝ (diffusion coefficient)
• 𝒘) denotes a standard Brownian motion
• 𝑑𝒘) can be viewed as infinitesimal white noise
• 𝒙) )∈ ;,:  is a stochastic process

• Numerically, the SDE can be seen as the limit
𝒙7?5 = 𝒙7 + ∆𝑡𝑓 𝒙7, 𝑖∆𝑡 + 𝑔 𝑖∆𝑡 ∆𝑡𝒛7 𝑖 = 0,1,⋯

• Under ∆𝑡 → 0, where 𝑡 = 𝑖∆𝑡 and 𝒛7~𝑁 𝟎, 𝑰
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Example: 1-dim Ornstein-Uhlenbeck process

• The Ornstein-Uhlenbeck process 𝑥) is defined by 
𝑑𝑥) = 𝜃 𝜇 − 𝑥) 𝑑𝑡 + 𝜎𝑑𝑤)

• where 𝜃 > 0, 𝜎 > 0, 𝜇 ∈ ℝ and 𝑤) is 1-dim standard Brownian 
motion
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Example: Forward SDE

𝑑𝒙) =
1
0 𝑑𝑡 + 0.1 0

0 0.1 𝑑𝒘), 𝑝; 𝒙 = 𝑁 𝒙 0
0 , 0.1 0

0 0.1
• Then, 𝑝) 𝒙 = 𝑁 𝒙 𝑡

0 , 0.1 + 𝑡 0
0 0.1 + 𝑡
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Solution of SDE

• 𝒙) )∈ ;,:  is a solution for SDE if

𝒙) = 𝒙; +E
;

)
𝑓 𝒙<, 𝑠 𝑑𝑠 + E

;

)
𝑔 𝑠 𝑑𝒘<

• The Itô stochastic integral is defined as

E
;

)
𝑔 𝑠 𝑑𝒘< = lim

∆)→;
L
78;

𝑔 𝑖∆𝑡 ∆𝑡𝒛7

• where 𝒛7~𝑁(𝟎, 𝑰)
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Representation of SDE

• For 𝑡 ≥ 0, consider an SDE which possesses the following form
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘)

• The solution of an SDE is a continuous collection of random 
variables 𝒙) )∈ ;,:

• These random variables trace stochastic trajectories as the time 
index 𝑡 grows from the start time 0 to the end time 𝑇

• Let 𝑝) 𝒙 denote the (marginal) probability density function 
of 𝒙). I.e., ∫A𝑝) 𝒙 𝑑𝒙 =𝑃 𝒙) ∈ 𝐴

• The transition kernel from 𝒙< to 𝒙) where 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 is 
denoted by

𝑝 𝒙)|𝒙<
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Representation of SDE

• For 𝑡 ≥ 0, consider an SDE which possesses the following form
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘)

• The solution of an SDE is a continuous collection of random 
variables 𝒙) )∈ ;,:

• Here, 𝑡 ∈ 0, 𝑇 is analogous 
• multiple noise scales index 𝑖 = 1,2,⋯ , 𝐿 with SMLD
• variance schedules index 𝑡 = 1,2,⋯ , 𝑇 with DDPM

• 𝑝; 𝒙 = 𝑝'()( 𝒙 data distribution
• After perturbing 𝑝'()( 𝒙 with the stochastic process for a 

sufficiently long time 𝑇, 𝑝: 𝒙 becomes close to a tractable noise 
distribution 𝜋 𝒙 , called a prior distribution
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Fokker-Planck equation

• The noise perturbation procedure 𝑝) 𝒙 under the SDE
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘)

• is governed by the Fokker-Planck(FP) equation 

• For 𝒅 = 𝟏, the FP equation is

𝜕)𝑝) = −𝜕B 𝑓𝑝) +
𝑔%

2
𝜕B% 𝑝)

• More precisely, this means 

𝜕)𝑝) 𝑥 = −𝜕B 𝑓 𝑥, 𝑡 𝑝) 𝑥 +
𝑔% 𝑡
2 𝜕B% 𝑝) 𝑥

• for all 𝑡 > 0 and 𝑥 ∈ ℝ
• This is a partial differential equation(PDE)
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Fokker-Planck equation (multi-dim)

• The noise perturbation procedure 𝑝) 𝒙 under the SDE
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝒈 𝑡 𝑑𝒘)

• is governed by the Fokker-Planck(FP) equation where
𝒈 ⋅ : ℝ → ℝ'×'

• The multi-dim FP equation is

𝜕!𝑝! 𝒙 = −&
"#$

%
𝜕
𝜕𝑥"

𝑓" 𝒙, 𝑡 𝑝! 𝒙 +
1
2
&
"#$

%

&
&#$

%
𝜕'

𝜕𝑥"𝜕𝑥&
𝑝! 𝒙 &

(#$

%

𝑔"( 𝑡 𝑔&( 𝑡

= −&
"#$

%
𝜕
𝜕𝑥"

𝑓" 𝒙, 𝑡 𝑝! 𝒙 +
1
2
&
"#$

%

&
&#$

%
𝜕'

𝜕𝑥"𝜕𝑥&
𝑝! 𝒙 𝑔",: 𝑡 𝑔&,:+ 𝑡

= −∇𝒙 ⋅ 𝒇 𝒙, 𝑡 𝑝! 𝒙 +
1
2
Tr 𝒈𝒈+∇𝒙'𝑝! 𝒙

= −∇𝒙 ⋅ 𝒇 𝒙, 𝑡 𝑝! 𝒙 +
1
2Tr 𝒈

+∇-'𝑝! 𝒙 𝒈
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Example: Brownian Motion

• For a standard Brownian motion, the Fokker-Planck equation 
reduces to the heat equation

𝜕)𝑝) 𝒙 =
1
2
Tr ∇𝒙%𝑝) 𝒙 =

1
2
∆𝒙𝑝) 𝒙
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Example: 1-dim Ornstein-Uhlenbeck process

• Consider the Ornstein-Uhlenbeck process 𝑥) is defined by 
𝑑𝑥) = −𝜃𝑥)𝑑𝑡 + 𝜎𝑑𝑤)

• Then,

𝑝 𝑥) 𝑥; = 𝑁 𝑥) 𝑒9&)𝑥;,
𝜎%
2𝜃 1 − 𝑒9%&)

• If 𝑥;~𝑁 0, ,
)

&
, then

𝑥)~𝑁 0,
𝜎%

2𝜃
, 𝑝) 𝑥 =

1
𝜋𝜎%/𝜃

exp −
𝜃
𝜎%
𝑥%

• 𝑝) 𝑥 satisfies the FP equation

0 = 𝜕)𝑝) 𝑥 − 𝜕B 𝑓𝑝) 𝑥 +
𝑔%

2
𝜕B% 𝑝) 𝑥

= 𝜕B 𝜃𝑥𝑝) 𝑥 +
𝑔%

2
𝜕B% 𝑝) 𝑥 = 0
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Example: Ornstein-Uhlenbeck process

• The Ornstein-Uhlenbeck process
𝑑𝒙) = −𝜃𝒙)𝑑𝑡 + 𝜎𝑑𝒘)

• with 𝜃 ≥ 0 and 𝜎 > 0 adds noise to the datapoint 𝒙)
• As 𝑇 → ∞, all information is lost

𝑝!"#" 𝑝#(𝒙) ⋯ 𝑝((𝒙)⋯
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Example: Ornstein-Uhlenbeck process

• The Ornstein-Uhlenbeck process
𝑑𝒙) = −𝜃𝒙)𝑑𝑡 + 𝜎𝑑𝒘)

• with 𝜃 ≥ 0 and 𝜎 > 0 adds noise to the datapoint 𝒙)
• As 𝑇 → ∞, all information is lost

• Since 𝑝 𝒙) 𝒙; = 𝑁 𝒙) 𝑒9&)𝒙;,
,)

%& 1 − 𝑒9%&) 𝑰 , we have 𝒙: is 

approximately distributed as 𝑁 𝟎, ,
)

%& 𝑰 if 𝜃 > 0 and 𝑇 ≈ ∞

• Sampling 𝒙:~𝑁 𝟎, ,
)

%&
𝑰 is easy. Can we reverse the SDE to 

sample 𝒙;?

𝑝!"#" 𝑝#(𝒙) ⋯ 𝑝((𝒙)⋯
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Perturbing data with stochastic processes

Stochastic process

Probability densities

Infinitesimal noiseDeterministic drift

Stochastic differential equation (SDE)
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Forward-time ODE

• To simulate
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡, 𝒙; given

• for 0 < 𝑡 compute
𝒙7?5 = 𝒙7 + ∆𝑡𝒇 𝒙7, 𝑖∆𝑡 , 𝑖 = 0,1,⋯

• for sufficiently small ∆𝑡 with 𝑡 = 𝑖∆𝑡
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Reverse-time ODE

• To simulate
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡, 𝒙: given

• for 0 < 𝑡 < 𝑇, set 𝐿 = 𝑇/∆𝑡 and compute
𝒙795 = 𝒙7 − ∆𝑡𝑓 𝑥7, 𝑖∆𝑡 , 𝑖 = 𝐿, 𝐿 − 1,⋯ , 1

• for sufficiently small ∆𝑡 > 0

• Reversing time for ODEs is easy
• Mapping from 𝒙; to 𝒙: is a one-to-one map
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Forward-time SDE

• To simulate
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘), 𝒙;~𝑝;

• for 0 < 𝑡, sample 𝒙;~𝑝; and compute
𝒙7?5 = 𝒙7 + ∆𝑡𝑓 𝑥7, 𝑖∆𝑡 + 𝑔 𝑖∆𝑡 ∆𝑡𝒛7 𝑖 = 0,1,⋯

• for sufficiently small ∆𝑡 > 0 and 𝒛7~𝑁 𝟎, 𝑰
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Reverse-time SDE

• To simulate
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡, +𝑔 𝑡 𝑑𝒘), 𝒙:~𝑝:

• for 0 < 𝑡 < 𝑇, set 𝐿 = 𝑇/∆𝑡 and compute
𝒙795 = 𝒙7 − ∆𝑡𝑓 𝑥7, 𝑖∆𝑡 − 𝑔 𝑖∆𝑡 ∆𝑡𝒛7, 𝑖 = 𝐿, 𝐿 − 1,⋯ , 1

• This does not work. Rewinding time in SDEs takes more care
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Generating samples by reversing the SDE

• For an SDE,
𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘), 𝒙;~𝑝;

• has a corresponding reverse SDE, whose closed form is given by
𝑑𝒙) = 𝒇 𝒙), 𝑡 − 𝑔% 𝑡 ∇𝒙# log 𝑝) 𝒙) 𝑑𝑡 + 𝑔 𝑡 𝑑�𝒘), 𝒙:~𝑝:
• 𝑑𝑡 represents a negative infinitesimal time step 
• �𝒘) is a standard BM when time flows backwards from 𝑇 to 0. 

I.e. �𝒘) = 𝒘: −𝒘:9)

• In order to compute the reverse SDE, we need to estimate 
∇𝒙 log 𝑝) 𝒙 which is the score function of 𝑝) 𝒙

Reverse-time diffusion equation models
B. D. O. Anderson. Stochastic Processes and their Applications. 1982
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Generating samples by reversing the SDE

• In order to compute the reverse SDE, we need to estimate 
∇𝒙 log 𝑝) 𝒙 which is the score function of 𝑝) 𝒙
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Estimating the reverse SDE with score-based models

• Solving the reverse SDE requires us to know the terminal 
distribution 𝑝: 𝒙 , and the score function ∇𝒙 log 𝑝) 𝒙

• By design, 𝑝: 𝒙 is close to the prior distribution 𝜋 𝒙 which is 
fully tractable

• In order to estimate ∇𝒙 log 𝑝) 𝒙 , train a time-dependent score-
based model 𝒔& 𝒙, 𝑡 such that 

𝒔& 𝒙, 𝑡 ≈ ∇𝒙 log 𝑝) 𝒙

• This is analogous to the NCSM 𝒔& 𝒙, 𝑖 used for finite noise 
scales, trained such that 𝒔& 𝒙, 𝑖 ≈ ∇𝒙 log 𝑝,' 𝒙
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Estimating the reverse SDE with score-based models

• Training objective for 𝒔& 𝒙, 𝑡 is a continuous weighted 
combination of Fisher divergences, given by

𝐸)~G ;,: 𝜆 𝑡 𝐸𝒙~$# 𝒙 𝒔& 𝒙, 𝑡 − ∇𝒙 log 𝑝) 𝒙 %
%

• where 𝑈 0, 𝑇 denotes a uniform distribution over the time 
interval 0, 𝑇 and 𝜆:ℝ? → ℝ? is a positive weighting function
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(Recap) Foundation of DDPM

argmin
&

𝐷 𝑞 𝒙)95|𝒙) ∥ 𝑝& 𝒙)95|𝒙)

= argmin
&

𝐸𝒙*~$!"#" 𝐷 𝑞 𝒙)95|𝒙), 𝒙; ∥ 𝑝& 𝒙)95|𝒙)
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Foundation of score-based models

argmin
&

𝐸𝒙~$# 𝒙 𝒔& 𝒙, 𝑡 − ∇𝒙 log 𝑝) 𝒙 %
%

= argmin
&

𝐸𝒙~$!"#" 𝒙 𝐸𝒙#~$ 𝒙#|𝒙 𝒔& 𝒙), 𝑡 − ∇𝒙# log 𝑝 𝒙)|𝒙 %
%
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Estimating the reverse SDE with score-based models

• Training objective for 𝒔& 𝒙, 𝑡 is a continuous weighted 
combination of Fisher divergences, given by

𝐸)~G ;,: 𝜆 𝑡 𝐸𝒙~$# 𝒙 𝒔& 𝒙, 𝑡 − ∇𝒙 log 𝑝) 𝒙 %
%

• Where 𝑈 0, 𝑇 denotes a uniform distribution over the time 
interval 0, 𝑇 and 𝜆:ℝ? → ℝ? is a positive weighting function

• The objective can be written as

𝐸)~G ;,: �

�

𝜆 𝑡 𝐸𝒙~$!"#" 𝒙 𝐸𝒙#~$ 𝒙#|𝒙 �

�

�

�

𝒔& 𝒙), 𝑡

− ∇𝒙# log 𝑝 𝒙)|𝒙 %
%

• Typically, we use 𝜆 𝑡 ∝ 1/𝐸 ∇𝒙# log 𝑝 𝒙)|𝒙 %
%

to balance the 
magnitude of different score matching losses across time
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Remark of the transition kernel 𝑝 𝒙5|𝒙

• We typically need to know the transition kernel 𝑝 𝒙)|𝒙
• When 𝒇 ⋅, 𝑡 is affine, the transition kernel is always a 

(conditional) Gaussian distribution, where the mean and variance 
are often known in closed-forms
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Estimating the reverse SDE with score-based models

• Once our model 𝒔& 𝒙, 𝑡 is trained to optimality, we can plug it 
into the reverse SDE to obtain an estimated reverse SDE

𝑑𝒙) = 𝒇 𝒙), 𝑡 − 𝑔% 𝑡 𝒔& 𝒙), 𝑡 𝑑𝑡 + 𝑔(𝑡)𝑑�𝒘)

• We can start with 𝒙:~𝜋 and solve the above reverse SDE to 
obtain a sample 𝒙; obtained in such way as 𝑝&

• If weighting function 𝜆 𝑡 = 𝑔% 𝑡 , then
𝐷 𝑝; 𝑥 ∥ 𝑝& 𝑥

≤
𝑇
2
𝐸)~G ;,: 𝜆 𝑡 𝐸𝒙~$# 𝒙 𝒔& 𝒙, 𝑡 − ∇𝒙 log 𝑝) 𝒙 %

% + 𝐷 𝑝: ∥ 𝜋

Maximum Likelihood Training of Score-Based Diffusion Models 
Y. Song, C. Durkan, I. Murray, S. Ermon. NeurIPS 2021.
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How to solve the reverse SDE

• By solving the estimated reverse SDE with numerical SDE 
solvers, we can simulate the reverse stochastic process for 
sample generation

• Euler-Maruyama method(analogous to Euler for ODEs)
• Small positive time step ∆𝑡 ≈ 0
• Initializes 𝑡 = 𝑇, and iterates the following procedure until 
𝑡 ≈ 0

∆𝒙 ← 𝒇 𝒙, 𝑡 − 𝑔% 𝑡 𝒔& 𝒙, 𝑡 ∆𝑡 + 𝑔 𝑡 ∆𝑡𝒛
𝒙 ← 𝒙 + ∆𝒙
𝑡 ← 𝑡 − ∆𝑡

• Here 𝒛~𝑁 𝟎, ∆𝑡𝑰
• I.e. 𝒙)9∆) = 𝒙) − ∆𝑡 𝒇 𝒙), 𝑡 − 𝑔% 𝑡 𝒔& 𝒙), 𝑡 + 𝑔 𝑡 ∆𝑡𝒛
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How to solve the reverse SDE

• By solving the estimated reverse SDE with numerical SDE solvers, 
we can simulate the reverse stochastic process for sample 
generation

• Other numerical SDE solvers can be employed for 
example Milstein method and stochastic Runge-Kutta method
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Perturbing data with stochastic processes

Stochastic process

Probability densities

Infinitesimal noiseDeterministic drift

Stochastic differential equation (SDE)

WLOG: Toy SDE
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Generation via reverse stochastic processes

Forward SDE (t: 0àT)

Reverse SDE (t: Tà0)

Infinitesimal noise in the reverse 
time direction

Score function!
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Score-based generative modeling via SDEs

• Time-dependent score-based model
𝒔& 𝒙, 𝑡 ≈ ∇𝒙 log 𝑝) 𝒙

• Training objective

𝐸)~G ;,: 𝜆 𝑡 𝐸𝒙~$# 𝒙 𝒔& 𝒙, 𝑡 − ∇𝒙 log 𝑝) 𝒙 %
%
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Score-based generative modeling via SDEs

• Time-dependent score-based model
𝒔& 𝒙, 𝑡 ≈ ∇𝒙 log 𝑝) 𝒙

• Training objective

𝐸)~G ;,: 𝜆 𝑡 𝐸𝒙~$# 𝒙 𝒔& 𝒙, 𝑡 − ∇𝒙 log 𝑝) 𝒙 %
%

• In case of 𝑑𝒙) = 𝜎 𝑡 𝑑𝒘) with 0 ≤ 𝑡 ≤ 𝑇, the reverse-time SDE 
is 

𝑑𝒙) = −𝜎% 𝑡 𝒔& 𝒙), 𝑡 𝑑𝑡 + 𝜎(𝑡)𝑑�𝒘)
• Euler-Maruyama method

𝒙)9∆) = 𝒙) − 𝜎% 𝑡 𝒔& 𝒙), 𝑡 ∆𝑡 + 𝜎 𝑡 𝒛
• where 𝒛~𝑁 𝟎, ∆𝑡𝑰
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Predictor-Corrector sampling methods

• In addition, there are two special properties of our reverse SDE 
that allow for even more flexible sampling methods:
• estimation of ∇𝒙 log 𝑝) 𝒙 via time-dependent score-based 

model 𝒔& 𝒙, 𝑡
• sampling from each marginal distribution 𝑝) 𝒙
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Predictor-Corrector sampling methods

• Thus, we can apply score-based MCMC approaches to fine-tune 
the trajectories obtained from numerical SDE solvers

• We propose Predictor-Corrector samplers
• Predictor: any numerical SDE solver predicting 
𝒙)9∆)~𝑝)9∆) 𝒙 from an existing sample 𝒙)~𝑝) 𝒙

• Corrector: score-based MCMC procedure

• At each step of the Predictor-Corrector sampler, we first use the 
predictor to choose a proper step size ∆𝑡 > 0, and then predict
𝒙)9∆) based on the current sample 𝒙)

• Next, we run several corrector steps to improve the 
sample 𝒙)9∆) according to our score-based model
𝒔& 𝒙)9∆), 𝑡 − ∆𝑡 so that 𝒙)9∆) becomes a high-quality sample 
from 𝑝)9∆) 𝒙
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Predictor-Corrector sampling methods

• Predictor-Corrector sampling
• Predictor: Numerical SDE solver
• Corrector: Score-based MCMC

predictor

corrector
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Results on predictor-corrector sampling

Score-Based Generative Modeling through Stochastic Differential Equations
Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. ICLR 2021.

Published as a conference paper at ICLR 2021

Table 1: Comparing different reverse-time SDE solvers on CIFAR-10. Shaded regions are obtained
with the same computation (number of score function evaluations). Mean and standard deviation
are reported over five sampling runs. “P1000” or “P2000”: predictor-only samplers using 1000 or
2000 steps. “C2000”: corrector-only samplers using 2000 steps. “PC1000”: Predictor-Corrector (PC)
samplers using 1000 predictor and 1000 corrector steps.

Variance Exploding SDE (SMLD) Variance Preserving SDE (DDPM)

Predictor

FIDÓ Sampler
P1000 P2000 C2000 PC1000 P1000 P2000 C2000 PC1000

ancestral sampling 4.98 ˘ .06 4.88 ˘ .06 3.62 ˘ .03 3.24 ˘ .02 3.24 ˘ .02 3.21 ˘ .02

reverse diffusion 4.79 ˘ .07 4.74 ˘ .08 3.60 ˘ .02 3.21 ˘ .02 3.19 ˘ .02 3.18 ˘ .01
probability flow 15.41 ˘ .15 10.54 ˘ .08

20.43 ˘ .07
3.51 ˘ .04 3.59 ˘ .04 3.23 ˘ .03

19.06 ˘ .06
3.06 ˘ .03

4.1 GENERAL-PURPOSE NUMERICAL SDE SOLVERS

Numerical solvers provide approximate trajectories from SDEs. Many general-purpose numerical
methods exist for solving SDEs, such as Euler-Maruyama and stochastic Runge-Kutta methods (Kloe-
den & Platen, 2013), which correspond to different discretizations of the stochastic dynamics. We
can apply any of them to the reverse-time SDE for sample generation.

Ancestral sampling, the sampling method of DDPM (Eq. (4)), actually corresponds to one special
discretization of the reverse-time VP SDE (Eq. (11)) (see Appendix E). Deriving the ancestral
sampling rules for new SDEs, however, can be non-trivial. To remedy this, we propose reverse
diffusion samplers (details in Appendix E), which discretize the reverse-time SDE in the same way
as the forward one, and thus can be readily derived given the forward discretization. As shown in
Table 1, reverse diffusion samplers perform slightly better than ancestral sampling for both SMLD and
DDPM models on CIFAR-10 (DDPM-type ancestral sampling is also applicable to SMLD models,
see Appendix F.)

4.2 PREDICTOR-CORRECTOR SAMPLERS

Unlike generic SDEs, we have additional information that can be used to improve solutions. Since we
have a score-based model s✓˚ px, tq « rx log ptpxq, we can employ score-based MCMC approaches,
such as Langevin MCMC (Parisi, 1981; Grenander & Miller, 1994) or HMC (Neal et al., 2011) to
sample from pt directly, and correct the solution of a numerical SDE solver.

Specifically, at each time step, the numerical SDE solver first gives an estimate of the sample
at the next time step, playing the role of a “predictor”. Then, the score-based MCMC approach
corrects the marginal distribution of the estimated sample, playing the role of a “corrector”. The
idea is analogous to Predictor-Corrector methods, a family of numerical continuation techniques for
solving systems of equations (Allgower & Georg, 2012), and we similarly name our hybrid sampling
algorithms Predictor-Corrector (PC) samplers. Please find pseudo-code and a complete description
in Appendix G. PC samplers generalize the original sampling methods of SMLD and DDPM: the
former uses an identity function as the predictor and annealed Langevin dynamics as the corrector,
while the latter uses ancestral sampling as the predictor and identity as the corrector.

We test PC samplers on SMLD and DDPM models (see Algorithms 2 and 3 in Appendix G) trained
with original discrete objectives given by Eqs. (1) and (3). This exhibits the compatibility of PC
samplers to score-based models trained with a fixed number of noise scales. We summarize the
performance of different samplers in Table 1, where probability flow is a predictor to be discussed
in Section 4.3. Detailed experimental settings and additional results are given in Appendix G. We
observe that our reverse diffusion sampler always outperform ancestral sampling, and corrector-only
methods (C2000) perform worse than other competitors (P2000, PC1000) with the same computation
(In fact, we need way more corrector steps per noise scale, and thus more computation, to match the
performance of other samplers.) For all predictors, adding one corrector step for each predictor step
(PC1000) doubles computation but always improves sample quality (against P1000). Moreover, it
is typically better than doubling the number of predictor steps without adding a corrector (P2000),
where we have to interpolate between noise scales in an ad hoc manner (detailed in Appendix G) for
SMLD/DDPM models. In Fig. 9 (Appendix G), we additionally provide qualitative comparison for

6
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High-Fidelity Generation for 1024x1024 Images

Score-Based Generative Modeling through Stochastic Differential Equations
Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. ICLR 2021.
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VE and VP forward SDEs

• The O-U process 𝒙) is defined by 
𝑑𝒙) = −𝜃𝒙)𝑑𝑡 + 𝜎𝑑𝒘)

• where 𝜃 > 0, 𝜎 > 0 and 𝒘) is 𝑑-dim standard Brownian motion

• Two types O-U processes are primarily considered for the 
forward SDE
• Variance-exploding(VE)

𝑑𝒙) = 𝜎𝑑𝒘)
𝑝 𝒙) 𝒙; = 𝒙) 𝛾)𝒙;, 𝜎)%𝑰 , 𝛾) = 1, 𝜎)% = 𝑡𝜎%

• Variance -preserving(VP)
𝑑𝒙) = −𝜃𝒙)𝑑𝑡 + 𝜎𝑑𝒘)

𝑝 𝒙) 𝒙; = 𝒙) 𝛾)𝒙;, 𝜎)%𝑰 , 𝛾) = 𝑒9&), 𝜎)% =
𝜎%

2𝜃
1 − 𝑒9%&)



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

VE and VP forward SDEs

• Two types O-U processes are primarily considered for the 
forward SDE
• Variance-exploding(VE)

𝑑𝒙) = 𝜎𝑑𝒘)
𝑝 𝒙) 𝒙; = 𝒙) 𝛾)𝒙;, 𝜎)%𝑰 , 𝛾) = 1, 𝜎)% = 𝑡𝜎%

• Variance -preserving(VP)
𝑑𝒙) = −𝜃𝒙)𝑑𝑡 + 𝜎𝑑𝒘)

𝑝 𝒙) 𝒙; = 𝒙) 𝛾)𝒙;, 𝜎)%𝑰 , 𝛾) = 𝑒9&), 𝜎)% =
𝜎%

2𝜃
1 − 𝑒9%&)

• In both cases,
𝑝 𝒙) 𝒙; = 𝒙) 𝛾)𝒙;, 𝜎)%𝑰

• i.e. 𝒙)|𝒙; = 𝛾)𝒙; + 𝜎)𝝐 where 𝝐~𝑁(𝟎, 𝑰)
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General VE SDE

• Let 𝜎 𝑡 be a non-decreasing function of 𝑡

• General VE SDE:

𝑑𝒙) =
𝑑 𝜎% 𝑡

𝑑𝑡
𝑑𝒘)

𝑝 𝒙) 𝒙; = 𝑁 𝒙) 𝛾)𝒙;, 𝜎)%𝑰 , 𝛾) = 1, 𝜎)% = 𝜎% 𝑡

• Although the mean is preserved, the variance explodes
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General VP SDE

• Let 𝜃: 0,∞ → ℝ? be a function

• General VP SDE:

𝑑𝒙) = −
𝜃 𝑡
2

𝒙)𝑑𝑡 + 𝜃 𝑡 𝑑𝒘)

𝑝 𝒙) 𝒙; = 𝑁 𝒙) 𝛾)𝒙;, 𝜎)%𝑰 ,

𝛾) = 𝑒9
5
% ∫*

# & < '<, 𝜎)% = 1 − 𝑒9 ∫*
# & < '<

• In particular, 

Var 𝒙) = 𝑰 + 𝑒9 ∫*
# & < '< Var 𝒙; − 𝑰

• If Var 𝒙; = 𝑰, then
Var 𝒙) = 𝑰



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Training with O-U and DSM

• Using 𝒙)|𝒙; = 𝛾)𝒙; + 𝜎)𝝐 where 𝝐~𝑁(𝟎, 𝑰), the score function 
simplifies to 

∇𝒙# log 𝑝 𝒙)|𝒙 =
𝛾)𝒙 − 𝒙)
𝜎)%

= −
𝝐
𝜎)
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Variance exploding SDEs (SMLD)

• Let 𝑞, 9𝒙|𝒙 ≔ 𝑁 9𝒙|𝒙, 𝜎%𝐼 , 𝑞, 9𝒙 ≔ ∫𝑝'()( 𝒙 𝑞, 9𝒙|𝒙 𝑑𝒙
• Consider a sequence of positive noise scales 𝜎5 < 𝜎% < ⋯ < 𝜎6
• Each perturbation kernel 𝑞,' 9𝒙|𝒙 can be derived from the 

following Markov chain:

𝒙7 = 𝒙795 + 𝜎7% − 𝜎795% 𝒛795, 𝑖 = 1,⋯ , 𝐿

• where 𝒛795~𝑁 𝟎, 𝑰 , 𝒙;~𝒑'()( and 𝜎; ≔ 0 to simplify the 
notation

Data space Noise space

𝑝!"#" 𝑞$! 𝑞$" ⋯ 𝑞$%
≈ 𝑁 𝟎, 𝜎%&𝑰
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Variance exploding SDEs (SMLD)

• In the limit of 𝐿 → ∞, 𝜎7 7856 becomes a function 𝜎 𝑡  and 𝒛7
becomes 𝒛 𝑡

• The Markov chain 𝒙7 7856 becomes a continuous stochastic 
process 𝒙) )8;

5 (or 𝒙), 0 ≤ 𝑡 ≤ 1 )
• Let 

𝒙7/6 ≔ 𝒙7, 𝜎 𝑖/𝐿 ≔ 𝜎7, 𝒛 𝑖/𝐿 = 𝒛7
• Then we can rewrite 

𝒙7 = 𝒙795 + 𝜎7% − 𝜎795% 𝒛795, 𝑖 = 1,⋯ , 𝐿

• as follows with ∆𝑡 = 1/𝐿 and 𝑡 ∈ 0, 56 , ⋯ , 6956 :

𝒙)?∆) = 𝒙) + 𝜎%(𝑡 + ∆𝑡) − 𝜎%(𝑡)𝒛) ≈ 𝒙) +
𝑑𝜎% 𝑡
𝑑𝑡

∆𝑡𝒛)
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Variance exploding SDEs (SMLD)

• In the limit of ∆𝑡 → 0,

𝒙)?∆) = 𝒙) + 𝜎%(𝑡 + ∆𝑡) − 𝜎%(𝑡)𝒛) ≈ 𝒙) +
𝑑 𝜎% 𝑡

𝑑𝑡 ∆𝑡𝒛)

• converges to

𝑑𝒙) =
𝑑 𝜎% 𝑡

𝑑𝑡
𝑑𝒘)

• VE SDE always yields a process with exploding variance when 
𝑡 → ∞



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

SDE in the wild (SMLD)

• In SMLD, the noise scales 𝜎7 7856 is a geometric sequence 
• SMLD models normalize image inputs to the range 0,1
• Since 𝜎7 7856 is a geometric sequence, we have 

𝜎
𝑖
𝐿

= 𝜎" = 𝜎./0
𝜎.12
𝜎./0

"3$
43$

, 𝑖 = 1,2,⋯ , 𝐿

• In the limit of 𝐿 → ∞, we have 𝜎 𝑡 = 𝜎IJK
,+,-
,+./

)
for 𝑡 ∈ 0,1

• Thus, the corresponding VE SDE is

𝑑𝒙! = 𝜎./0
𝜎.12
𝜎./0

!
2 log

𝜎.12
𝜎./0

𝑑𝒘!, 𝑡 ∈ 0,1

• and the perturbation kernel can be derived:

𝑝 𝒙!|𝒙 = 𝑵 𝒙!|𝒙, 𝜎./0' 𝜎.12
𝜎./0

'!
𝑰
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SDE in the wild (SMLD)

• There is one subtlety when 𝑡 = 0: by definition 𝜎 0 = 𝜎; = 0
• However, 𝜎 0? ≔ lim

)→;?
𝜎 𝑡 = 𝜎IJK ≠ 0

• It means that 𝜎 𝑡 for SMLD is not differentiable at 𝑡 = 0
• Thus, we bypass this issue by always solving the SDE and its 

associated probability flow ODE in the range 𝑡 ∈ [𝜖, 1] for some 
small 𝜖 > 0. e.g., 𝜖 = 109L
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Variance preserving SDEs (DDPM)

• Positive noise scales 0 < 𝛽5 < 𝛽%⋯ < 𝛽6 < 1
• In DDPM, the Markov chain is

𝒙7 = 1 − 𝛽7𝒙795 + 𝛽7𝒛795, 𝑖 = 1,2,⋯ , 𝐿
• To obtain the limit of Markov chain when 𝐿 → ∞, define an 

auxiliary set of noise scales �̅�7 = 𝐿𝛽7 785
6

and rewrite 𝒙7 =
1 − 𝛽7𝒙795 + 𝛽7𝒛795 as below

𝒙7 = 1 −
�̅�7
𝐿
𝒙795 +

�̅�7
𝐿
𝒛795, 𝑖 = 1,⋯ , 𝐿

𝑝!"#" 𝑞(𝒙') 𝑞(𝒙&) ⋯ 𝑞(𝒙%)



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Variance preserving SDEs (DDPM)

• In the limit of 𝐿 → ∞, �̅�7 = 𝐿𝛽7 785
6

becomes a function 𝛽 𝑡
indexed by 𝑡 ∈ 0,1

• Let 
𝒙7/6 ≔ 𝒙7, 𝛽 𝑖/𝐿 ≔ �̅�7, 𝒛 𝑖/𝐿 = 𝒛7

• Then we can rewrite the Markov chain Eq. 

𝒙" = 1 −
�̅�"
𝐿
𝒙"3$ +

�̅�"
𝐿
𝒛"3$, 𝑖 = 1,⋯ , 𝐿

• as follows with ∆𝑡 = 1/𝐿 and 𝑡 ∈ 0, 56 , ⋯ , 6956 :

𝒙)?∆) = 1 − 𝛽 𝑡 + ∆𝑡 ∆𝑡𝒙) + 𝛽 𝑡 + ∆𝑡 ∆𝑡𝒛)
≈ 𝒙) − 1/2𝛽 𝑡 + ∆𝑡 ∆𝑡𝒙) + 𝛽 𝑡 + ∆𝑡 ∆𝑡𝒛)
≈ 𝒙) − 1/2𝛽 𝑡 ∆𝑡𝒙) + 𝛽 𝑡 ∆𝑡𝒛)
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Variance preserving SDEs (DDPM)

• In the limit of ∆𝑡 → 0,

𝒙)?∆) ≈ 𝒙) −
1
2
𝛽 𝑡 ∆𝑡𝒙) + 𝛽 𝑡 ∆𝑡𝒛)

• converges to

𝑑𝒙) = −
1
2
𝛽 𝑡 𝒙)𝑑𝑡 + 𝛽 𝑡 𝑑𝒘)

• VP SDE yields a process with bounded variance
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Converting the SDE to an ODE

• Let 𝑝) 𝒙 )∈[;,:] be the marginal density functions of the 
forward-time SDE 

𝑑𝒙) = 𝒇 𝒙), 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘), 𝒙;~𝑝;
• and its reverse-time SDE
𝑑𝒙) = 𝒇 𝒙), 𝑡 − 𝑔% 𝑡 ∇𝒙# log 𝑝) 𝒙) 𝑑𝑡 + 𝑔 𝑡 𝑑�𝒘), 𝒙:~𝑝:

• Then 𝑝) 𝒙 )∈[;,:] is also the marginal density function of the 
following reverse-time ODE

𝑑𝒙) = 𝒇 𝒙), 𝑡 −
𝑔% 𝑡
2

∇𝒙# log 𝑝) 𝒙) 𝑑𝑡, 𝒙:~𝑝:

• This ODE defines a flow model a one-to-one mapping between
𝒙: and 𝒙;
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Sampling generation via ODE

• Consider the particular forward-time SDE
𝑑𝒙) = −𝜃𝒙)𝑑𝑡 + 𝜎𝑑𝒘), 𝒙;~𝑝;

• If 𝑇 is sufficiently large, 𝑝:~𝑁 0, 𝜎:%𝐼

• Consider the reverse-time ODE

𝑑𝒙) = −𝜃𝒙) −
𝜎%

2
∇𝒙# log 𝑝) 𝒙) 𝑑𝑡, 𝒙:~𝑝:
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Converting the SDE to an ODE

SDE Ordinary differential equation (ODE)

𝑑𝒙# = −𝜃𝒙#𝑑𝑡 + 𝜎𝑑𝒘# 𝑑𝒙# = −𝜃𝒙# −
𝜎)

2 ∇𝒙# log 𝑝# 𝒙# 𝑑𝑡

Score function
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Converting the SDE to an ODE

• We can think of this as a (continuous time, infinite depth) 
normalizing flow
• Unique ODE solution implies invertible mapping
• To invert, solve ODE backwards from 𝑇 to 0
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Evaluating likelihoods with ODEs (flow model)

Unbiased 
estimator

ODE solver

à ODE

Computable in p
olynomial time

Computing the probability density function 
(change of variables formula)
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Competitive likelihoods on test data

Method CIFAR-10 ImageNet 32x32
PixelSNAIL [Chen et al. 2018] 2.85 3.80

Delta-VAE [Razavi et al. 2019] 2.83 3.77

Sparse Transformer [Child et al. 2019] 2.80 –

Score flow model 2.83 3.76

Negative log-probability ↓

Challenges years of dominance of 
autoregressive models and VAEs

(bits/dim)
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Accelerated sampling

• Numerical methods + ODE formulation to accelerate sampling
• DDIM [Song and Ermon, 2021]: 
• Coarsely discretize the time axis, take big steps
• Corresponds to exponential integrator (semi-linear ODE) 

[Lu et al, 2022; Zhang and Chen, 2022]
• 10x-50x speedups, comparable sample quality

à ODE



Thanks


